microRNA-17-92 cluster is a direct Nanog target and controls neural stem cell through Trp53inp1

نویسندگان

  • Neha Garg
  • Agnese Po
  • Evelina Miele
  • Antonio Francesco Campese
  • Federica Begalli
  • Marianna Silvano
  • Paola Infante
  • Carlo Capalbo
  • Enrico De Smaele
  • Gianluca Canettieri
  • Lucia Di Marcotullio
  • Isabella Screpanti
  • Elisabetta Ferretti
  • Alberto Gulino
چکیده

The transcription factor Nanog plays a critical role in the self-renewal of embryonic stem cells as well as in neural stem cells (NSCs). microRNAs (miRNAs) are also involved in stemness regulation. However, the miRNA network downstream of Nanog is still poorly understood. High-throughput screening of miRNA expression profiles in response to modulated levels of Nanog in postnatal NSCs identifies miR-17-92 cluster as a direct target of Nanog. Nanog controls miR-17-92 cluster by binding to the upstream regulatory region and maintaining high levels of transcription in NSCs, whereas Nanog/promoter association and cluster miRNAs expression are lost alongside differentiation. The two miR-17 family members of miR-17-92 cluster, namely miR-17 and miR-20a, target Trp53inp1, a downstream component of p53 pathway. To support a functional role, the presence of miR-17/20a or the loss of Trp53inp1 is required for the Nanog-induced enhancement of self-renewal of NSCs. We unveil an arm of the Nanog/p53 pathway, which regulates stemness in postnatal NSCs, wherein Nanog counteracts p53 signals through miR-17/20a-mediated repression of Trp53inp1.

منابع مشابه

A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression

The precise control of miR-17∼92 microRNA (miRNA) is essential for normal development, and overexpression of certain miRNAs from this cluster is oncogenic. Here, we find that the relative expression of the six miRNAs processed from the primary (pri-miR-17∼92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17∼92 is processed to a biogenesis intermed...

متن کامل

Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia.

MicroRNA (miRNA)-17-92 cluster (miR-17-92), containing seven individual miRNAs, is frequently amplified and overexpressed in lymphomas and various solid tumors. We have found that it is also frequently amplified and the miRNAs are aberrantly overexpressed in mixed lineage leukemia (MLL)-rearranged acute leukemias. Furthermore, we show that MLL fusions exhibit a much stronger direct binding to t...

متن کامل

MicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats

Multipotent mesenchymal stromal cells (MSCs) are selfrenewing, multipotent progenitor cells, which robustly release exosomes. MSCs improve neurological outcome after stroke and may exert their therapeutic effects through exosomes. MSC-harvested exosomes are involved in cellto-cell communication and are hypothesized as the paracrine effectors of MSCs by encapsulating and transferring a large num...

متن کامل

MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells

The microRNA-17-92 (miRNA-17-92) cluster, at chromosome 13q31-q32, also known as oncomir-1, consists of seven miRNAs that are transcribed as a polycistronic unit. Over-expression of miRNA-17-92 has been observed in lymphomas and other solid tumors. Whether miRNA-17-92 expression affects the response of tumor cells to radiotherapy is not addressed so far. In the present study, we studied the eff...

متن کامل

The miR-17∼92 microRNA Cluster Is a Global Regulator of Tumor Metabolism.

A central hallmark of cancer cells is the reprogramming of cellular metabolism to meet the bioenergetic and biosynthetic demands of malignant growth. Here, we report that the miR-17∼92 microRNA (miRNA) cluster is an oncogenic driver of tumor metabolic reprogramming. Loss of miR-17∼92 in Myc(+) tumor cells leads to a global decrease in tumor cell metabolism, affecting both glycolytic and mitocho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013